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Introduction and definition of atrial
cardiomyopathy
The atria provide an important contribution to cardiac function.1,2

Besides their impact on ventricular filling, they serve as a volume res-
ervoir, host pacemaker cells and important parts of the cardiac con-
duction system (e.g. sinus node, AV node), and secrete natriuretic
peptides like atrial natriuretic peptide (ANP) and brain natriuretic
peptide (BNP) that regulate fluid homeostasis. Atrial myocardium
is affected by many cardiac and non-cardiac conditions3 and is, in
some respects, more sensitive than ventricular.4 The atria are acti-
vated, besides the three specialized intermodal tracts,5,6 through
working cardiomyocytes, so that any architectural or structural
change in the atrial myocardium may cause significant electrophysio-
logical disturbances. In addition, atrial cells (both cardiomyocytes
and non-cardiomyocyte elements like fibroblasts, endothelial cells,
and neurons) react briskly and extensively to pathological stimuli3

and are susceptible to a range of genetic influences.7 Responses in-
clude atrial cardiomyocyte hypertrophy and contractile dysfunction,
arrhythmogenic changes in cardiomyocyte ion-channel and trans-
porter function, atrial fibroblast proliferation, hyperinnervation,
and thrombogenic changes.2 Thus, atrial pathologies have a substan-
tial impact on cardiac performance, arrhythmia occurrence, and
stroke risk.1,8

Ventricular cardiomyopathies have been well classified; how-
ever, a definition and detailed analysis of ‘atrial cardiomyopathy’
is lacking from the literature. The purpose of the present consen-
sus report, prepared by a working group with representation from
the European Heart Rhythm Association (EHRA), the Heart
Rhythm Society (HRS), the Asian Pacific Heart Rhythm Society
(APHRS), and Sociedad Latino Americana de Estimulacion Cardi-
aca y Electrofisiologia (SOLAECE), was to define atrial cardiomy-
opathy, to review the relevant literature, and to consider the
impact of atrial cardiomyopathies on arrhythmia management
and stroke.

Definition of atrial cardiomyopathy
The working group proposes the following working definition of
atrial cardiomyopathy: ‘Any complex of structural, architectural,
contractile or electrophysiological changes affecting the atria
with the potential to produce clinically-relevant manifestations’
(Table 1).

Many diseases (like hypertension, heart failure, diabetes, and
myocarditis) or conditions (like ageing and endocrine abnormalities)
are known to induce or contribute to an atrial cardiomyopathy.
However, the induced changes are not necessarily disease-specific
and pathological changes often share many similarities.9,10 The
extent of pathological changes may vary over time and atrial loca-
tion, causing substantial intraindividual and interindividual differ-
ences. In addition, while some pathological processes may affect
the atria very selectively (e.g. atrial fibrillation-induced remodel-
ling), most cardiomyopathies that affect the atria also involve the
ventricles to a greater or lesser extent. There is no presently ac-
cepted histopathological classification of atrial pathologies.
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Therefore, we have proposed here a working histological/
pathopysiological classification scheme for atrial cardiomyopathies
(Table 1; Figure 1). We use the acronym EHRAS (for EHRA/HRS/
APHRS/SOLAECE), defining four classes: (I) principal cardio-
myocyte changes;11 – 15 (II) principally fibrotic changes;10,14,16 (III)
combined cardiomyocyte-pathology/fibrosis;9,11,12 (IV) primarily
non-collagen infiltration (with or without cardiomyocyte
changes).17 – 19 This simple classification may help to convey the
primary underlying pathology in various clinical conditions. The
EHRAS class may vary over time and may differ at atrial sites in cer-
tain patients. Thus, this classification is purely descriptive and in
contrast to other classifications (NYHA class, CCS class etc.),
there is no progression in severity from EHRAS class I to EHRAS
IV (Table 2). The classification may be useful to describe patho-
logical changes in biopsies and to correlate pathologies with re-
sults obtained from imaging technologies etc. In the future, this
may help to define a tailored therapeutic approach in atrial fibrilla-
tion (AF) (Figures 1–3).

Anatomical considerations and
atrial muscular architecture

Normal atrial structures
Gross morphology
Each atrium has a morphologically characteristic atrial body and ap-
pendage (Figure 4). In the body, there is a venous component with
the orifices of the systemic or pulmonary veins (PVs) and a vestibu-
lar component that surrounds the atrial outlet.20 The interatrial sep-
tum (IAS) separates the atrial bodies. The venous component of the
left atrium (LA) is located posterosuperiorly and receives the PVs at
the four corners, forming a prominent atrial dome. The LA is situ-
ated more posteriorly and superiorly than the right atrium sepa-
rated by the obliquity of the plane of the IAS.21

The LA appendage (LAA) is smaller than the right atrium append-
age (RAA). Narrower and with different shapes has a distinct open-
ing to the atrial body and overlies the left circumflex coronary
artery. Its endocardial aspect is lined by a complex network of mus-
cular ridges and membranes.22,23 Different LAA morphologies have
been described, and it appears that LAA morphology correlates
with the risk of thrombogenesis.24

Bachmann’s bundle is a broad epicardial muscular band running
along the anterior wall of both atria (Figure 4). The rightward
arms extend superiorly towards the sinus node and inferiorly

Figure 1 Histological and pathopysiological classification of atrial cardiomyopathies (EHRA/HRS/APHRS/SOLAECE): EHRAS classification. The
EHRAS class may vary over time in the cause of the disease and may differ at various atrial sites. Of note, the nature of the classification is purely
descriptive. EHRAS I-IV is not intended to describe disease progression from EHRAS I to EHRAS IV.

Table 1 Definition of atrial cardiomyopathy

‘Any complex of structural, architectural, contractile or
electrophysiological changes affecting the atria with the potential to
produce clinically-relevant manifestations’.
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towards the right atrioventricular groove, while the leftward arms
blend with deeper myofibres to pass around the neck of the LAA
and reunite posteriorly to join the circumferential vestibule of the

LA. The walls of LA are non-uniform in thickness (1–15 mm) and
thicker than the right atrium.25

Normal atrial myocardium
Atrial cardiomyocytes
Atrial cardiomyocytes are geometrically complex cylinders that
sometimes bifurcate at their ends where they connect with adjacent
fibres via band-like ‘intercalated discs’. This contractile syncytium is
organized in well-defined bands that establish non-uniform aniso-
tropic propagation of the atrial impulse.9,11,26 The only clear light-
microscopic morphological difference between atrial and ventricu-
lar cardiomyocytes is in size.27 In paraffin-embedded human speci-
mens, the cardiomyocyte transverse diameter is !12 mm in the
LAs vs. 20–22 mm in the ventricles.11,28 Atrial cardiomyocytes are
mainly mononucleated; a minor fraction possess two or more nu-
clei. The nucleus is usually centrally located, with granular and/or
condensed chromatin. The nuclear shape is influenced by fibre con-
traction, becoming more fusiform with longitudinal cell stretch.29

Biochemically, atrial cardiomyocytes have greater lipid content
than ventricular muscle cells.30

Atrial cardiomyocytes share many characteristics with ventricular
in terms of nucleus, contractile apparatus, cytoskeleton, and orga-
nelles.27,29,31,32 Unlike ventricular cardiomyocytes, atrial cardio-
myocytes do not possess an extensive T-tubule network but they
do have prominent sarcoplasmic reticulum (SR) elements known

Figure 2 (A) EHRAS Class I (biopsy): there are severe changes affecting ‘primarily’ the cardiomyocytes in terms of cell hypertrophy and myo-
cytolysis; fibrosis is much less evident than myocyte modifications. (B) EHRAS Class II (biopsy): cardiomyocyte alterations are relatively modest
compared with severe fibrotic changes; in this case, interstitial changes are much more prevalent than myocyte ones. (C) EHRAS Class III (biopsy):
this is a combination of cardiomyocyte changes and collagen fibre deposition. (D) EHRAS Class IV (autopsy heart): primarily neutrophilic
myocarditis.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 EHRAS classification of atrial cardiomyopathy

EHRAS
class

Histological characterization

I11–15,503 Morphological or molecular changes affecting
‘primarily’ the cardiomyocytes in terms of cell
hypertrophy and myocytolysis; no significant
pathological tissue fibrosis or other interstitial
changes

II8,12,14,504–506 Predominantly fibrotic changes; cardiomyocytes
show normal appearance

III9,11,12,217,266 Combination of cardiomyocyte changes (e.g. cell
hypertrophy, myocytolysis) and fibrotic changes

IV17–19 Alteration of interstitial matrix without prominent
collagen fibre accumulation

IVa Accumulation of amyloid

IVf Fatty infiltration

IVi Inflammatory cells

IVo Other interstitial alterations
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as Z-tubules.33 Therefore, the atrial sarcolemma does not protrude
into the cell, and voltage-operated Ca2+ channels mainly function at
the cell periphery.34 Atrial cardiomyocytes display specific granules
(100–400 nm) situated mainly in the paranuclear area adjacent to
the Golgi apparatus, which contain ANP, the BNP, and related
peptides.23,24

Atrial interstitium
Atrial interstitium consists of cellular and extracellular components
(see Figures 2–5). The cellular elements include fibroblast/myofi-
broblasts, adipocytes, undifferentiated mesenchymal cells, and iso-
lated inflammatory cells. The atrial wall has a significant number of
medium-sized blood vessels, especially in the sub-epicardium. Ma-
ture adipose tissue is frequently found in atrial myocardium, espe-
cially the epicardium, and often permeates the layers around
intramural coronary branches. The number of adipocytes is highly
variable and increases with age.27 The extracellular components
consist of collagen fibres, which form most of the myocardial skel-
eton, proteoglycan particles, lipidic debris, spherical micro-particles,
and matrix vesicles.27

Collagen fibers, mainly type I, are both normal and essential com-
ponents (Figures 1–5). Atrial fibrous tissue may be sub-divided into

Figure 3 EHRAS Class IV (autopsy heart): this image shows a
myocardial interstitial with some fibrosis but prominent amyloid
(AL type) deposition (left-hand side, congo red staining under
regular light microscope; right-hand side, congo red staining under
polarized light microscope).

Figure 4 Schematic representations and heart dissections to show the arrangement of the myocardial strands in the superficial parts of the
walls. (A) The dissection viewed from the anterior aspect display the interatrial muscle Bachmann bundle and its bifurcating branches leftward
and rightward. (B) A view of the roof and posterior wall of the left and right atriums. The right pulmonary veins (PVs) passes behind the intercaval
area. The subepicardial dissection shows the abrupt changes in fibre orientation and the myocardial strands (septopulmonary bundle) in the region
between the left and right PVs. The red arrows show multiple muscle bridges connecting the two atria. ICV, inferior caval vein; LAA, left atrial
appendage; LSPV, left superior pulmonary vein; MV, mitral valve; RAA, right atrial appendage; RIPV, right inferior pulmonary vein; RSPV, right su-
perior pulmonary vein; SCV, superior caval vein; TV, tricuspid valve (see text for details).
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Figure 5 Normal histology of the left atrium and relevant pathological changes in mitral valve disease-associated atrial fibrillation. (A) Medium-
power view of a normal left atrial myocardium which is composed of large bands of homogeneous cardiomyocytes. (B) In the same atrium as in (A),
the Van Gieson staining show that collagen fibres (red colour) are primarily seen in the adventitial spaces of blood vessels (arrow). (C) Low-power
view of a left atrium from a patient with mitral valve disease-associated atrial fibrillation. Large bands of cardiomyocytes are separated by significant
amounts of pathologic fibrous tissue (arrows). (D) In the same atrium as in (C), the Van Gieson staining shows that the pathologic fibrous signifi-
cantly thickens the perivascular spaces (perivascular fibrosis, arrow) and separates single or small groups of cardiomyocytes (interstitial fibrosis,
arrowhead). (E) In atrial fibrillation, a variable number of cardiomyocytes undergo loss of contractile elements starting from the perinuclear area
and resulting in so-called myocytolysis. These spaces may be empty (arrow) or filled with glycogen (arrowhead). (F) A higher-power view of myo-
cytolysis with both glycogen rich (arrow) and optically empty (arrowhead) cardiomyocytes. (G) Ultrastructural view of a myolytic cardiomyocyte
with significant loss of contractile elements around the nucleus (asterisk). In this empty area, there is very often accumulation of mitochondria
(arrowhead) while the adjacent myofibrils display signs of abnormal contraction (arrow). (H) An LA from a patient with atrial fibrillation where the
myocardial microcirculation (arrow) is slightly reduced and irregularly distributed. Stainings. (A and C) haematoxylin–eosin staining; (B and D) Van
Gieson staining for collagen; (E and F) Periodic acid Schiff staining; (G) ultrastructural image; (H) immunohistochemical analysis with an anti-CD31
antibody. Original magnifications. (A, B, E, and H) ×20; (C and D) ×4; (F) ×40; (G) ×2800.
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pure interstitial and perivascular (or adventitial). Interstitial collagen
fibres represent !5% of the atrial wall volume. The atrial myocar-
dium is also the site of sparse postganglionic nerve endings (from
the ‘intrinsic cardiac nervous system’), mostly within discrete fat
pads but also among cardiomyocytes.35

Atrial-specific physiological and
functional considerations

Atrial-selective electrophysiological
properties
The atria have a number of electrophysiological features that distin-
guish them from the ventricles and govern their arrhythmia
susceptibility.

Action potential/ion-channel properties
Atrial cardiomyocytes have distinct action potential (AP) properties
from ventricular cardiomyocytes, resulting in a large part from dis-
tinct ion-channel properties and distribution (Figure 6A).36,37 Atrial
background inward-rectifier K+ current (IK1) is smaller than that
of ventricular K+ current, resulting in a less negative resting potential
and more gradual slope of phase-3 repolarization. Atrial cells also

have two K+-currents that are absent in ventricle cells: the ultrara-
pid delayed rectifier current (IKur) and the acetylcholine-regulated
K+-current (IKACh). In addition, there is evidence that atrial Na+-
current has different properties compared with ventricular
current.38 As well as distinctions between atrial and ventricular
APs, different atrial regions may have discrete AP and ion-channel
properties.37,39 These cellular electrophysiological characteristics
have implications for antiarrhythmic drug action and design, and
may also affect the responses to atrial arrhythmias and disease.36,37

Intercellular coupling properties
The atria have a different pattern of cell-to-cell coupling protein
(connexin) distribution compared with ventricular myocardium.36

Whereas working ventricular cardiomyocytes express connexin-43
exclusively, atrial cardiomyocytes have significant expression of
connexin-40 (Figure 6B).36 Heterogeneities in connexin-40 distribu-
tion are common in paroxysmal AF and may play a pathophysio-
logical role,40 and gene variants affecting connexin-40 sequence
and/or transcription predispose to AF occurrence.41

Atrial structural properties
The atria have a very complex 3D structure (Figure 6C) not found in
the ventricles. These include interatrial connections limited to

Figure 6 (A) Comparison of atrial and ventricular action potential properties and underlying ionic currents. Resting potentials (2mV) are more
negative (averaging 280 to 285 mV) in ventricular vs. atrial (270 to 275 mV) myocytes. (B) Connexin distribution differs between atria and
ventricles, with connexin-43 only expressed in ventricular cardiomyocytes (CMs) but atrial CMs having both connexin-40 and connexin-43.
(C) Ralistic reconstruction of the structure of sheep atria. The right atrium (RA), left atrium (LA), pectinate muscles (PM), Bachmann’s bundle
(BB) and pulmonary veins (PV) are colour coded. From ref. (43) with permission.

Atrial cardiomyopathies Page 7 of 36

by guest on Septem
ber 9, 2016

D
ow

nloaded from
 



Bachmann’s bundle, the septum, and the CS; pectinate muscles, the
crista terminalis, and fibres surrounding the coronary sinus in the
right atrium; and the PVs with complex fibre orientation around
them in the LA. These structural complexities have important po-
tential implications for atrial pathophysiology and management of
atrial arrhythmias.42 Extensive recent work has gone into the realis-
tic mathematical reconstruction of such geometric complexities,43

and they have been incorporated into analytical approaches de-
signed to implement patient-specific arrhythmia therapies.44 Cable-
like strands of atrial tissue like the pectinate muscles and crista ter-
minalis are organized such that conduction within them is primarily
longitudinal, with an ‘anisotropy ratio’ (longitudinal/transverse con-
duction velocities) as great as 10, whereas in working ventricular
muscle the ratio is typically more between 2 and 4.45

Autonomic ganglia
There are autonomic ganglia on the surface of the heart that are im-
portant way-stations for cardiac autonomic control.46 Moreover, al-
terations in local cardiac innervation and intracardiac autonomic
reflexes play an important role in physiology and arrhythmia con-
trol. Most of the cardiac autonomic ganglia are located on the atria,
and in particular in the region of the PV ostia. Thus, they are well po-
sitioned to affect atrial electrical activity in regions particularly im-
portant in AF, and their alteration by therapeutic manoeuvers like
PV ablation may contribute to antiarrhythmic efficacy.42,46,47

Left atrium mechanics
The left atrial contribution to overall cardiovascular performance is
determined by unique factors. First, left atrial function critically de-
termines left ventricular (LV) filling. Second, chamber-specific struc-
tural, electrical and ion remodelling alter left atrial function and
arrhythmia susceptibility. Third, atrial function is highly relevant
for the therapeutic responses of AF. Fourth, LA volume is an import-
ant biomarker that integrates the magnitude and duration of LV dia-
stolic dysfunction. The development of sophisticated, non-invasive
indices of LA size, and function might help to clinically exploit the
importance of LA function in prognosis and risk stratification.1,48

Fibre orientation of the two thin muscular layers (the fascicles of
which both originate and terminate at the atrioventricular ring)
introduce a complexity that challenges functional analysis. Ultra-
structurally, atrial cardiomyocytes are smaller in diameter, have few-
er T-tubules, and more abundant Golgi apparatus than ventricular.
In addition, rates of contraction and relaxation, conduction velocity,
and anisotropy differ, as does the myosin isoform composition and
the expression of ion transporters, channels, and gap junctional pro-
teins (see relevant sections).

Functions of the left atrium
The principal role of the LA is to modulate LV filling and cardiovascular
performance by operating as a reservoir for PV return during LV sys-
tole, a conduit for PV return during early LV diastole, and as a booster
pump that augments LV filling during LV diastole. There is a critical
interplay between these atrial functions and ventricular systolic and
diastolic performance. Thus, while LA compliance (or its inverse, stiff-
ness), and, to a lesser extent, LA contractility and relaxation are the
major determinants of reservoir function during LV systole, LV end-
systolic volume and descent of the LV base during systole are

important contributors. Conduit function is also governed by LA com-
pliance and is reciprocally related to reservoir function, but because
the mitral valve is open in diastole, conduit function is also closely re-
lated to LV compliance (of which relaxation is a major determinant).
Atrial booster-pump function reflects the magnitude and timing of at-
rial contractility, but also depends on venous return (atrial preload), LV
end-diastolic pressures (atrial afterload), and LV systolic reserve.

Left atrium booster-pump function
Left atrium booster-pump function represents the augmented
LV-filling resulting from active atrial contraction (minus retrograde
blood-ejection into the PVs) and has been estimated by measure-
ments of (i) cardiac output with and without effective atrial systole,
(ii) relative LV-filling using spectral Doppler of transmitral, PV, and
LA-appendage flow, (iii) LA-shortening and volumetric analysis,
and (iv) tissue Doppler and deformation analysis (strain and strain-
rate imaging) of the LA-body.1 Booster-pump function can also be
evaluated echocardiographically by estimating the kinetic energy
and force generated by LA contraction. The relative importance
of the LA contribution to LV filling and cardiac output remain con-
troversial. A load-independent index of LA contraction based on the
analysis of instantaneous relation between LA pressure and volume,
analogous to LV end-systolic elastance measurements, has been
used as a load-independent measure of LA pump function, validated
ex vivo and in the intact dog (Figure 7).49 While LA pressure–volume
loops can be generated with invasive and semi-invasive means in hu-
mans,50 these methods are cumbersome, time-consuming, and dif-
ficult to apply. Measurement of myocardial strain and strain rate,
which represent the magnitude and rate of myocardial deformation,
assessed using either tissue Doppler velocities (tissue Doppler im-
aging, TDI) or by 2D echocardiographic (2D speckle-tracking or
STE) techniques (Figure 8) provide objective, non-invasive measure-
ments of LA myocardial performance and contractility that over-
come these limitations.1,51

Left atrium reservoir function
Nearly half of the LV stroke volume and its associated energy are
stored in the LA during LV systole. This energy is subsequently ex-
pended during the LV diastole. Reservoir function is governed large-
ly by atrial compliance during ventricular systole, which is measured
most rigorously by fitting atrial pressures and dimensions, taken ei-
ther at the time of mitral valve opening/closure over a range of atrial
pressures and volumes or during ventricular diastole, to an expo-
nential equation.52 Although this method requires atrial dimensions
and pressures, the relative reservoir function can be estimated sim-
ply with PV Doppler: the proportion of LA inflow during ventricular
systole provides an index of the reservoir capacity of the atrium.
Reservoir function can also be estimated from LA time–volume re-
lations as either the total ejection fraction or distensibility fraction,
calculated as the maximum minus minimum LA volume, normalized
to maximal or minimal LA volume, respectively.

Although largely neglected, the LA–appendage is more compliant
than the LA–body,52 so the contribution of the appendage to overall
LA compliance is substantial with potential negative implications for
routine atrial appendectomy/ligation during mitral valve surgery.

Left atrium strain and strain rates during LV systole predict suc-
cessful sinus rhythm restoration following DC cardioversion or
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AF ablation, and are surrogates of atrial fibrosis and structural re-
modelling; coupled with an estimate of atrial pressure (e.g. transmi-
tral E/E′), strain has the potential to estimate atrial distensibility
non-invasively.1,53

Left atrium conduit function
Left atrium conduit function occurs primarily during ventricular dia-
stole and represents the trasport of blood volume that cannot be
attributed to either reservoir or booster-pump functions, account-
ing for approximately one-third of atrial flow.54 A reciprocal relation
exists between LA conduit and reservoir functions; a redistribution
between these functions is an important compensatory mechanism
that facilitates LV filling with myocardial ischaemia, hypertensive
heart disease, and mitral stenosis (MS). Conduit function is esti-
mated by the early diastolic transmitral flow, diastolic PV-flow,
and LA strain and strain rate during early diastole.

Atrial-selective Ca21 handling
There are major differences in the expression and function of Ca2+-
handling proteins between atria and ventricles (Figure 9).55 The atria
have reduced cardiomyocyte contraction and relaxation times and
shorter Ca2+-transient duration.56–58 In atria, protein levels57,59 and

activity57,59 of the SR Ca2+-ATPase2a (Serca2a) are two-fold higher,
whereas the Serca2a-inhibitor phospholamban (PLB) is less abundant,
vs. ventricles.57,59 Atrial, but not ventricular, Serca2a is also regulated
by sarcolipin (SLN) and SLN ablation increases atrial SR Ca2+-uptake
and contractility.60 L-type Ca2+-current61 is similar in both chambers,
whereas protein levels of ryanodine receptor type-2, calsequestrin,
triadin, junction and Na2+–Ca2+ exchanger are lower in atria than
in ventricles.59,62,63 In contrast to ventricular myocardium, T-tubules
are less abundant in atrial cardiomyocytes.64 In addition, atrial cardio-
myocytes possess much more Ca2+-buffering mitochondria than ven-
tricular cardiomyocytes.56 As a consequence, the atrial Ca2+ wave
starts in the myocyte periphery and then propagates to the centre
of the myocyte, activating additional Ca2+-releasing sites in the SR.55

Pathology of atrial
cardiomyopathies

Lone atrial fibrillation (atrial fibrillation
without concomitant conditions)
‘Lone’ atrial fibrillation (LAF) is diagnosed when no apparent explan-
ation or underlying comorbidity can be identified.65,66 Over the last

Figure 7 Left atrial pressure–volume loop. (A) Analogue recordings of left atrial pressure and dimensions in the time domain. Vertical lines
indicate time of mitral valve opening (A), end of passive atrial emptying and onset of atrial diastasis (B), atrial end-diastole (C), and atrial end-systole
(D). a and v represent respective venous pressure waves. (B) Left atrial pressure–volume loop from a single beat illustrating characteristic
figure-of-eight configuration. Arrows indicate the direction of loop as a function of time. A loop represents active atrial contraction. V loop re-
presents passive filling and emptying of the LA. MVO, time of mitral valve opening; MVC, approximate time of mitral valve closure; LA, left atrial
end-systole; and LAd, left atrial end-diastole. Reproduced from ref. (49) with permission.
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few years, new epidemiological associations with AF have emerged
and the number of true LAF cases has progressively decreased.67

Like AF associated with comorbidities, LAF occurs more frequently
in males than in females with a ratio of 3 to 4:1.68 Recent studies
have shown that true cases of LAF can be diagnosed even in subjects
older than 60 years, so that this age limit seems inappropriately con-
servative.69 At the same time, it is unclear whether cases with left
atrial enlargement should be excluded from the LAF category. In
fact, LA enlargement might even be the consequence of the
arrhythmia.70

‘Lone’ atrial fibrillation is at the lower end of the thromboembolic
risk spectrum, with only a 1–2% cumulative 15-year risk of stroke.66

However, with ageing and/or the occurrence of cardiovascular
comorbidities, the risk of AF-related complications (including
thromboembolic events) increases.71 Patients originally diagnosed

with LAF may follow different clinical courses based on their left at-
rial volume: individuals who retain normal LA size throughout long-
term follow-up show a relatively benign course, while those with LA
enlargement experience adverse events like stroke, myocardial in-
farction, and heart failure.72 The majority of LAF patients first pre-
sent with paroxysmal episodes and show low progression rates into
permanent AF.71,73

Atrial fibrillation has clear genetic determinants.7 These include
common gene variants with low predictive strength and rare gene
mutations that have much greater penetrance.7

Frustaci et al.14 explored the histological morphology of
right atrial septal biopsies from patients with lone paroxysmal
AF, finding chronic inflammatory infiltrates, foci of myocyte
necrosis, focal replacement fibrosis, and myocyte cytoplasmic va-
cuoles consistent with myolysis. Of their 12 patients, 10 showed

Figure 8 LA functions colour-coded displays of atrial functions (red, reservoir; blue, conduit; yellow, booster pump) related to events in the
cardiac cycle. Displayed are pulmonary venous (PV) velocity, LA strain, LA strain rate, LA volume and pressure, and mitral spectral and tissue
Doppler. Reproduced from ref. (1) with permission.
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EHRAS class III changes and 2 showed EHRAS class II. Stiles
et al.74 found bi-atrial structural change, conduction abnor-
malities, and sinus node dysfunction in paroxysmal LAF patients.
Skalidis et al.75 demonstrated atrial perfusion abnormalities
and coronary flow reserve impairment. Much more recently,

morphometric assessment of atrial biopsies from the LA poster-
ior wall of persistent or long-lasting persistent LAF patients de-
monstrated cardiomyocyte hypertrophy, myolytic damage,
interstitial fibrosis, and reduced connexin-43 expression vs.
controls.76

Figure 9 Excitation–contraction coupling in atria vs. ventricles. Schematic representation of the cell structure and major Ca2+ handling pro-
teins, along with related currents and ion transporters (A). Illustration of action potential (top), Ca2+ transient (middle) and confocal linescan
image of intracellular Ca2+ wave propagation towards cell centre (bottom) in a ventricular (left) vs. atrial (right) cardiomyocyte (B). Arrows in-
dicate differences in expression and/or function of Ca2+ handling proteins in atrial vs. ventricular cardiomyocytes. INa, Na+ current; FKPB12.6,
FK506-binding protein 12.6; JPH2, Junctophilin-2; MyBP-CMyosin bindig protein C; TnI, Troponin-I; for further abbreviations, see text.
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Isolated atrial amyloidosis
The accumulation of insoluble, misfolded proteins is linked to an in-
creasing number of age-related degenerative diseases.77 Amyloid-
osis represent the deposition of insoluble, fibrillar proteins in a
cross b-sheet structure that characteristically binds dyes such as
Congo red. The most common form of age-related or senile amyl-
oidosis is limited to the atrium, a condition known as isolated atrial
amyloidosis (IAA).17,78 The incidence of atrial amyloidosis increases
with age, exceeding 90% in the ninth decade.79 Isolated atrial amyl-
oidosis is also linked to structural heart disease. In atrial biopsies
from 167 patients undergoing cardiac surgery, 23 of 26 amyloid-
positive specimens were from patients with rheumatic heart disease
(RHD), while the remaining 3 came from patients with atrial septal
defects.80 The overall incidence of 16% was greater than that was
seen in control atrial autopsy specimens from trauma victims
(3%). Histologically, IAA is classified as EHRAS IVa (Figure 3; Table 2).

Atrial natriuretic peptide is a fibrillogenic protein that forms
IAA.81 Amyloid deposits are immunoreactive for ANP in most
patients,17 while transthyretin, a transport protein implicated in sys-
temic senile amyloidosis, was also identified in 10%4 (NT-pro-ANP
has been identified in other studies82). As with fibrosis, amyloidosis
can cause local conduction block and P-wave duration is increased in
IAA. Atrial amyloid is found more commonly in patients with AF vs.
sinus rhythm (Figure 3). Both AF and IAA increased with advancing
age and female sex, but the relationship between the two is inde-
pendent of age and gender.83,84 Isolated atrial amyloidosis is de-
tected in 80% of PV sleeves of elderly patients.84

For organ-specific amyloidosis such as Alzheimer’s disease, there
is no detectable correlation between quantity of fibrillar deposits
and disease advancement.85 Rather, disease phenotype correlates
most closely with accumulation of soluble, prefibrillar protein aggre-
gates.86 Preamyloid oligomers (PAOs) are cytotoxic to cardiomyo-
cytes.87 They do not bind Congo red and thus are not visible by
standard amyloid staining methods. Using a conformation-specific
antibody, PAOs often co-localizing with ANP were detected in atrial
samples of 74 of 92 patients without AF undergoing cardiac sur-
gery.88 The preamyloid oligomer content was independently asso-
ciated with hypertension. Additional studies are needed to further
confirm this association and whether PAOs are increased in AF.

NPPA mutations
Atrial natriuretic peptide is released from the atria in response to
atrial stretch or volume expansion, and produces natriuresis,
diuresis, and vasodilation.89 It also interacts with other endogenous
systems, inhibiting the renin–angiotensin-II–aldosterone and sym-
pathetic nervous systems, and regulates ion currents.90,91 Atrial
natriuretic peptide-knockout mice develop cardiac hypertrophy
and exaggerated responses to hypertrophic stress.92 The gene en-
coding the precursor protein for ANP, NPPA, encodes prepro-ANP,
a 151 amino acid protein that includes a signal peptide cleaved off to
form pro-ANP,93 which is stored in dense granules in the atria. Re-
leased pro-ANP undergoes proteolytic processing to generate
N-terminal pro-ANP and ANP, 98 and 28 amino acids in length, re-
spectively. N-terminal pro-ANP is cleaved into three hormones
with biological activity similar to ANP: long-acting natriuretic hor-
mone (LANH), vessel dilator peptide, and kaliuretic hormone.

Genetic studies have linked abnormal ANP production to familial
atrial tachyrrhythmias and atrial cardiomyopathy. In a large family
with Holt–Oram syndrome, a missense mutation in T-box tran-
scription factor 5 (TBx5) resulted in an atypical phenotype with
early-onset AF and the overexpression of multiple genes, including
NPPA.94 In a large family with multiple members having early-onset
LAF, a 2-bp deletion was identified that abolishes the ANP stop co-
don, producing a mature protein containing the usual 28 amino acids
plus an anomalous C-terminus of 12 additional residues.95 The mu-
tant ANP peptide is present in affected family members at plasma
concentrations 5–10 times higher than wild-type ANP. Studies of
the electrophysiological effects of ANP have been inconsistent.96

Additional NPPA variants (S64R and A117V) have also been linked
to AF.97,98 The S64R variant occurs in vessel dilator peptide rather
than ANP. A truncated peptide containing this mutation increased
IKs several fold, an effect predicted to shorten action potential dur-
ation (APD),97 but the variant has also been identified in unaffected
elderly individuals without AF,96 and its functional pathological sig-
nificance remains uncertain.

More recently, an autosomal-recessive atrial cardiomyopathy was
described in patients harbouring an NPPA mutation (Arg150Gln)
predicted to be damaging to protein structure.99 The phenotype
is characterized by biatrial enlargement, initially associated with at-
rial tachyarrhythmias such as AF and atrial flutter.100 Biatrial enlarge-
ment progresses to partial and ultimately severe atrial standstill,
associated with progressive decreases in atrial voltage and extensive
atrial scarring. Whether atrial structural changes are primary, or sec-
ondary to atrial enlargement, is unknown. Loss of the antihyper-
trophic effects of ANP may cause the massive atrial enlargement
seen in these patients.

Hereditary muscular dystrophies
A common finding in many inherited muscular dystrophies is cardiac
involvement, related to myocyte degeneration with fatty or fibrotic
replacement (Table 3).101 – 103 In some cases, this can be the pre-
senting or predominant clinical manifestation. Multiple complexes
and pathways are involved in the maintenance of myocyte integrity,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Hereditary muscular dystrophies with cardiac
involvement

Muscular dystrophy Protein/gene Primary cardiac
disease

Duchenne dystrophin DCM

Becker dystrophin DCM

Myotonic dystrophy, type 1 DMPK CSD

Emery-Dreifuss Emerin
Lamin A/C

CSD
(DCM)

Limb-Girdle Lamin A/C
Sarcoglycans
others

CSD
CM

Facioscapulohumeral Dux 4 CSD (rare)

DCM, dilated cardiomyopathy; CSD, conduction system disease; DMPK, myotonic
dystrophy protein kinase.
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and a defective or absent protein component can lead to progres-
sive cell death. The large dystrophin–glycoprotein complex links
the myocyte cytoskeleton to the extracellular basement membrane.
For diseases of dystrophin, sarcoglycans, and other complex-related
proteins, the most prominent manifestation is a dilated cardiomyop-
athy due to diffuse myocyte involvement, with arrhythmias and con-
duction abnormalities secondary to LV dysfunction.101 –105 Specific
atrial involvement can lead to sinus node disease and/or atrial ar-
rhythmias with associated thromboembolic events.106,107 Myotonic
dystrophy type I is the most common muscular dystrophy present-
ing in adults.108 Up to 15% develop atrial arrhythmias during a
10-year follow-up.109 The presence of conduction defects and atrial
arrhythmias are independent risk factors for sudden death.103,110 In
Emery-Dreifuss and Limb-Girdle type IB disease, widespread atrial
fibrosis can lead to atrial standstill.101 In Emery-Dreifuss, AF and
atrial flutter with slow ventricular responses and asystolic pauses
can be observed, coupled with the occurrence of thromboembol-
ism and stroke.111 In facioscapulohumeral muscular dystrophy,
arrhythmias are rare, with the most common being supraventricular
tachycardia.112 Histologically, the tissue composition may vary sub-
stantially, including all EHRAS classes (see Table 2).

Atrial cardiomyopathy due to congestive
heart failure
Congestive heart failure (CHF) is a common cause (contributing
condition) of AF.3 The CHF-induced atrial phenotype is complex.
A particularly important component is atrial fibrosis, which in ex-
perimental models occurs earlier in the course of CHF, and to a
much greater extent, than in the ventricles, at least in part because
of atrial-ventricular fibroblast–phenotype differences.4 Congestive
heart failure-related fibrosis slowly, if at all, and the AF-promoting
substrate predominantly tracks fibrosis rather than other compo-
nents of atrial remodelling like ion-current or connexin changes. Un-
like the case for AF-induced remodelling, the atrial ion-current
changes in CHF do not abbreviate APD or cause overall conduction
slowing,113,114 so they do not contribute directly to arrhythmogen-
esis. On the other hand, CHF atria are prone to triggered activity
due to abnormal Ca2+ handling.115 The principle underlying abnor-
mality appears to be increased cellular Ca2+ load. While the under-
lying mechanisms are not completely clear, they likely include
phospholamban hyperphosphorylation (which increases SR Ca2+

uptake) and AP prolongation (which increases Ca2+ loading by en-
hancing the period during which L-type Ca2+ channels are open).
The final phenotypic product of the CHF-induced Ca2+-handling
abnormalities is focal ectopic activity due to aberrant diastolic Ca2+-
release events from the SR, similar to abnormalities seen with par-
oxysmal and long-standing persistent AF.116

Congestive heart failure also causes atrial hypocontractility, des-
pite increased cytosolic Ca2+ transient, indicating reduced contract-
ile sensitivity to intracellular Ca2+, possibly because of reduced
expression of total and phosphorylated myosin-binding protein
C.115 This hypocontractility may be important in contributing to
the increased likelihood of thromboembolic events in AF patients
who also have CHF. Of the atrial changes that occur in CHF,
many are also seen in the ventricle. However, the highly atrial-
selective fibrosis may contribute to atrial cardiomyopathy in

the absence of clear signs of disturbed ventricular function, particu-
larly in patients with prior CHF events who later become well-
compensated under therapy or after resolution of the underlying
cause. Collagen depositions are prominent in CHF, leading most
commonly to EHRAS Class II and III properties. However, EHRAS
Class IVi and IVf may also be found in certain areas of the atria
(see Table 2).

Obstructive sleep apnoea
Obstructive sleep apnoea (OSA) is known to impair cardiac function
and predispose to AF.117–119 Obstructive sleep apnoea prolongs at-
rial conduction times, slows atrial conduction, reduces atrial-
electrogram voltages and increases electrogram complexity.117,118

Signal-averaged P-wave duration is increased by OSA, and decreases
significantly with continuous positive airway pressure treatment.120 In
a rat model, repeated obstructive apnoea over a 4-week period in-
creases AF vulnerability and slows atrial conduction by altering
connexin-43 expression and inducing atrial fibrosis.121

Atrial fibrillation-induced atrial
remodelling
Atrial fibrillation itself induces atrial remodelling that contributes to
the maintenance, progression, and stabilization of AF.41,116 The high
atrial rate causes cellular Ca2+ loading. This induces a decrease in
ICa,L due to down-regulation of the underlying Cav1.2 subunits,
and an increase in constitutively active IK,Ach

41,116,122,123 MiR-328 up-
regulation with consequent repression of Cav1.2-translation and
Ca2+-dependent calpain activation, causing proteolytic breakdown
of L-type Ca2+ channels.41,116 The rate-dependent up-regulation of
IK1 results from a Ca2+/calcineurin/NFAT-mediated down-
regulation of the inhibitory miR-26, removing translational– inhib-
ition of Kir2.1.41,116 Increased IK1 stabilizes AF by abbreviating and
hyperpolarizing atrial cardiomyocyte Aps.41 Small-conductance
Ca2+-activated K+ (SK) currents (ISK) also play a role in AF.41,116

Computational modelling shows that increased total inward-
rectifier K+ current in chronic atrial fibrillation (cAF) is the major
contributor to the stabilization of re-entrant circuits by shortening
APD and hyperpolarizing the resting membrane potential.41,116

Atrial tachycardia remodelling reduces Ca2+-transient amplitude
by a variety of mechanisms, contributing to atrial contractile dys-
function.41,116,124 Reduced atrial contractility causes atrial ‘stunning’
that may be involved in thromboembolic complications.

Long-term atrial tachycardia remodelling causes conduction
slowing in several animal models, at least partly due to INa down-
regulaton.122 Heterogeneously distributed gap-junction uncoupling
due to connexin remodelling likely contributes to atrial conduction
slowing.41,116 Heterogeneity in connexin-40 distribution correlates
with AF stability in goats with repetitive burst-pacing-induced AF.125

Connexin-40 expression decreases in the PVs of dogs with
AF-related remodelling, possibly due to tachycardia-induced
connexin-degradation by calpains.41,116

Long-term atrial tachycardia/AF may itself cause atrial fibrosis that
contributes to long-term persistence.126 Rapid atrial firing pro-
motes fibroblast differentiation to collagen-secreting myofibro-
blasts through autocrine and paracrine mechanisms.32 Atrial
tachycardia-induced NFAT-mediated decreases in fibroblast
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miR-26 may also contribute to structural remodelling. Atrial fibro-
blasts have non-selective cation channels of the transient receptor
potential (TRP) family that carry Ca2+ into the cell; the increased
cell-Ca2+ then triggers increased collagen production. Since
miR-26 represses TRPC3 gene expression, miR-26 reductions in-
crease TRPC3 expression, promoting fibroblast Ca2+ entry that
causes proliferation/myofibroblast differentiation.127 TRPM7 may
similarly contribute to fibrotic changes in AF.128

APD shortening in cAF patients also results from increased
inward-rectifier K+ currents,129 both IK1 and a constitutive form
of IK,Ach.

41,116 Agonist-activated IK,ACh is decreased in right atrium
of AF patients because of a reduction in underlying Kir3.1 and
Kir3.4 subunits,129 whereas agonist-independent current is
increased.41,116

Atrial cardiomyocytes from patients with long-standing persistent
AF show spontaneous diastolic SR Ca2+-release events (SCaEs) and
delayed after depolarizations (DADs).130 CaMKII-dependent RyR2
hyperphosphorylation underlies the SR Ca2+ leak and
SCaEs.32,106,130 Protein kinase A-dependent RyR2 hyperphosphor-
ylation also occurs,130 likely promoting the dissociation of the inhibi-
tory FKBP12.6 subunit from the RyR2 channel. Larger inward NCX
current may also contribute to the stronger propensity for
DADs.130

Although initial work pointed to unchanged INa or mRNA expres-
sion of the Nav1.5 a-subunit in AF patients, recent studies reported
reduced peak INa.

41,116 There is also evidence for increased INa,late,
although its functional consequences are less clear. Altered mRNA
and protein levels of connexin-40/-43 may also contribute to
re-entry-promoting conduction abnormalities in cAF patients. Re-
duced connexin-40 expression together with lateralization to the
transverse cell membrane may cause heterogeneous conduction.41,116

Overall, ion-channel changes contribute to AF stabilization and
early recurrence after cardioversion. Ca2+-handling abnormalities
are involved in atrial ectopy, and atrial fibrosis is important in the
progression of long-term persistent AF to resistant forms. Atrial
fibrillation-induced atrial myopathy has changes that depend on
AF duration. Very short-term AF produces no ultrastructural altera-
tions, while AF lasting several weeks causes EHRAS I alterations.13

Long-term persistent AF produces EHRA III changes.126

Drug-related atrial fibrillation
A large number of drug classes have been associated with the induc-
tion of AF either in patients without heart disease or in individuals
with pre-existing cardiac disorders (Table 4),131 but drug-induced
AF (DIAF) has received less attention than that it might deserve.
The overall incidence of DIAF is still unknown for several reasons:
(a) the evidence associating specific drugs with AF has largely
been based on anecdotal reports, with very few controlled pro-
spective clinical trials, (b) DIAF is often paroxysmal and documenta-
tion may be difficult/poor, (c) while DIAF is easily recognized if it
occurs just after i.v. drug administrations (e.g. adenosine or dobuta-
mine), AF episodes can be missed if they appear after multiple expo-
sures (e.g. chemotherapy), (d) patients often receive multiple drugs,
making the specific culprit agent difficult to identify, (e) with non-
cardiovascular drugs, DIAF is often diagnosed by non-cardiologists,
often with an imprecise description of the arrhythmic event and

clinical history.132 Multiple mechanisms have been suggested to ex-
plain the pathogenesis of DIAF: (a) direct atrial electrophysiological
effects like abbreviated refractoriness, slowed conduction, or trig-
gered activity due to Ca2+ loading, (b) changes in autonomic
tone, (c) myocardial ischaemia, (d) direct myocardial damage and
other mechanisms such as release of pro-inflammatory cytokines,
oxidative stress, hypotension, and electrolyte disturbances.131,132

In the majority of cases, DIAF is a benign self-limited disorder. How-
ever, DIAF may be clinically serious in polymedicated patients with
underlying comorbidities.132 Discontinuation of the causative drug(s)
usually leads to cardioversion in few minutes or hours. When AF per-
sists, treatment is similar to that of non-DIAF patients.133,134 Because
of the wide range of mechanisms by which drugs cause AF, the histo-
logical changes associated with DIAF may vary substantially from EH-
RAS class I– IV (see Table 2 for reference). Future studies are
warranted to assess specific effects of various drugs on atrial tissue.

Myocarditis
Myocarditis refers to an inflammatory disease of the heart, which
occurs as a result of exposure to external triggers (e.g. infectious
agents, toxins, or drugs) or internal ones like autoimmune
disorders.135,136

The incidence is difficult to ascertain since it depends on the diag-
nostic criteria. A likely estimate is 8 to 10 per 100 000 population,
representing the third leading cause of sudden death after hyper-
trophic cardiomyopathy and coronary artery disease.137 In autopsy
series, the prevalence of myocarditis varies from 2% to 42% in young
adults with sudden death.138,139 Biopsy demonstrates an inflamma-
tory infiltrate in 9–16% of patients with unexplained non-ischaemic
dilated cardiomyopathy.140,141

Myocarditis is defined by the ‘Dallas criteria’ as the presence of a
myocardial inflammatory infiltrate with necrosis and/or degener-
ation of adjacent cardiomyocytes of non-ischaemic nature.142 Ac-
cording to the type of inflammatory cell, myocarditis may be
subdivided into lymphocytic, eosinophilic, polymorphic, giant-cell
myocarditis, and cardiac sarcoidosis.136

Atrial fibrillation is frequently part of the clinical presentation of
myocarditis. In 245 patients with clinically suspected myocarditis, AF
occurred in about 30%.143 Myocarditis with lone atrial involvement
is rarly diagnosed.144 – 146 This may reflect the fact that atrial myocar-
dium is not methodically sampled either at autopsy or in routine en-
domyocardial biopsy. In most such cases, AF dominated the clinical
picture, suggesting a role for architectural remodelling that inter-
feres with atrial conduction.9,147 Giant-cell myocarditis is a dis-
tinct—and probably autoimmune—myocarditis characterized by
diffuse infiltration by lymphocytes and numerous multinucleated
giant-cells, frequent eosinophils, cardiomyocyte necrosis and, ultim-
ately, fibrosis. The natural course is often fulminant and mortality is
high if untreated. An isolated atrial variant of giant-cell myocarditis
was first reported in 1964.148 Since then, only a few cases have been
described in the English language literature. The atrial variant ap-
pears to have a more favourable course compared with the classical
form.149 The atrial giant-cell myocarditis may represent a distinct
entity, potentially attributable to atrium-specific auto-antigens.150

EHRAS Class IVi is observed in patients with atrial myocarditis. As
myocarditis persists and enters a chronic phase, characteristics may
change to EHRAS Class III (see Table 2).
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Atrial cardiomyopathy associated with
genetic repolarization disturbances
Atrial standstill, a severe form of atrial cardiomyopathy, is associated
with combined heterozygous mutations of SCN5A and
Connexin-40 genes.151 Gain-of-function mutations in K+-channel
subunits (e.g. KCNQ1, KCNH2, KCND3, and KCNE5) or
loss-of-function mutations in KCN5A have been identified in AF pa-
tients.152 Thus, either gain or loss of K+-channel function can cause
AF, indicating that repolarization requires optimal tuning and deficits

in either direction can be arrhythmogenic. Recently, early repolari-
zation or J-wave syndrome has been associated with AF although, in
middle-aged subjects, early repolarization in inferior leads did not
predict AF.153 A gain-of-function mutation in KCNJ8, encoding the
cardiac Kir 6.1 (KATP) channel, is associated with both increased
AF susceptibility and early repolarization.154 There is an established
association between atrial arrhythmias and primary ventricular
arrhythmia syndromes, which was first reported among conditions
that manifest with obvious structural abnormalities.155 Atrial

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4 Drugs reported to induce atrial fibrillation

Drug group Drugs Mechanism

Bisphosphonates Alendronate, zoledronic acid

Cardiovascular

Inotropics Dopamine, dobutamine, dopexamine, arbutamine,
enoximone, milrinone, levosimendan

Adrenergic stimulation

Vasodilators Isosorbide, losartan, flosequinan Hypotension with probable adrenergic reflex

Cholinergics Acetylcholine Vagal stimulation

Diuretics Thiazides Hypokaliemia

Respiratory System

Sympathicomimetics Pseudoephedrine, albuterol, oriciprenaline, salbutamol,
salmetrol

Adrenergic stimulation

Xanthines Aminophylline, teophylline Adrenergic stimulation

Central Nervous System

Anticholinergics Atropine Adrenergic stimulation

Anticonvulsants Lacosamide, paliperidone

Antidepressants Fluoexetine, tranylcypromine, trazodone Direct cardiodepressant effect, sympathetic tone

Antimigraine Ondasetron, sumatriptan coronary spasm

Antipsychotics Clozapine, loxapine, olanzapine Direct cardiodepressant effect, sympathetic tone

Cholinergics Physostigmine, donepezil Vagal stimulation

Dopamine agonists Apomorphine Vagal activity

Chemotherapeutics Cardiac injury, coronary vasospasm, hypertension, reactive oxygen
species, changes in mitochondrial calcium transport, electrolyte
disturbances, inflammation

Alylating agents Cisplatin, cyclophosphamide, ifosfamide, melphalan

Anthracyclines Doxorubicin, mitoxantrone

Anti-metabolites Capecitabine, 5-fluorouracil, gemcitabine

Antimicrotubule
agents

Docetaxel, paclitaxel

Tyrosine kinase
inhibitors

cetuximab, soratenib, sunitinib

Topoisomerase
inhibitors

amsacrine, etoposide

Monoclonal antibodies alemtuzumab, bevacizumab, rituximab, trastuzumab

Cytokines and
immunomodulators

azathioprine, interferon-gamma, interleukin-2,
lenalidomide

Genitourinary System

Drugs for erectile
dysfunction

sildenafil, tadalafil, vardenafil Hypotension with adrenergic reflex

Tocolytic drugs b2-adrenoceptor agonists (hexoprenalin, terbutaline),
magnesium sulphate

Hormones

Anabolic-androgenic
steroids

Structural changes, changes in autonomic activity
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fibrillation is relatively common in hypertrophic cardiomyopathy
(prevalence !20%).156 In arrhythmogenic right ventricular cardio-
myopathy, an even higher proportion (up to 40%) of patients may
manifest AF.157 The association with AF also extends to primary
arrhythmia syndromes without obvious structural heart disease.
Supraventricular tachycardias, primarily AF/AFl, have been reported
in Brugada syndrome.158,159 Among long QT syndrome (LQTS) pa-
tients, prolongation of action potentials leading to atrial fibrillation
has been suggested to be an atrial form of ‘torsades de pointes’.152

A subtle form of ‘cardiomyopathy’ that includes increased left atrial vo-
lumes occurs in !12% of LQTS patients.160 The reports available
mostly implicate genetic variants in Na+-channel genes.161 Patients
with early-onset lone AF have a high prevalence of LQTS-associated
SCN5A variants.162 A mouse model of LQT3 is prone to atrial arrhyth-
mias due to EADs.163 There are sporadic reports of atrial arrhythmias
in patients with CPVT.164 Taken together, the associations between AF
and sudden death syndromes likely reflect common mechanisms be-
tween atrial and ventricular arrhythmogenesis.

Ageing
In elderly dogs, premature impulses show markedly slowed conduc-
tion, associated with a doubling of fibrous-tissue content APD pro-
longation and spatial heterogeneity in repolarization.165,166 Clinical
mapping studies have also demonstrated similar findings of conduc-
tion abnormalities, prolonged refractoriness, reduced myocardial
voltage, and a greater number of double potentials and fractionated
electrograms.167,168 Perhaps as a result of these atrial changes, alter-
ation of wavefront propagation velocities has been described with
an inverse correlation to age.169 Histologically, fibrotic changes
are the most obvious alteration (EHRAS Class II; see Table 2).

Hypertension
Hypertension accounts for at least one in five incident AF cases.170

In hypertensive subjects, both left atrial enlargement and P-wave
changes are predictive of AF occurrence.171,172

In small animal models, mimicking hypertension by partial aortic
clamping induces LA hypertrophy, fibrosis, connexin-43 down-
regulation and slow/inhomogeneous conduction.173 Prenatal cor-
ticosteroid exposure-induced hypertension in sheep causes atrial
conduction abnormalities, wavelength shortening, and increased
AF.174 Lau et al. utilized a one-kidney one-clip model to investigate
the impact of short- and long-term hypertension on the evolution of
an atrial cardiomyopathy.175,176 Utilization of this model intrinsically
is more reflective of a disordered renin–angiotensin axis. Short-
term hypertension progressively enlarged the LA, reduced LA
emptying fraction, prolonged atrial refractoriness, slowed conduc-
tion, and caused LA interstitial fibrosis and inflammatory cell infiltra-
tion.175,176 In patients with established hypertension and LV
hypertrophy, there is global and regional conduction slowing asso-
ciated with fractionated electrograms and double potentials along
the crista terminalis, along with an increase in low-voltage areas.177

Importantly, population studies show increased AF risk even with
‘pre-hypertension’ (systolic blood pressure 130–139 mmHg).178

The abnormal atrial substrate is reversible, with studies demonstrat-
ing improved electrical and structural parameters and reduced AF
burden following treatment with renin–angiotensin–aldosterone
system blockers.179 – 181 In patients with resistant hypertension

and improved blood pressure following renal denervation, there
was a global improvement in atrial conduction and reduced complex
fractionated activity. Histologically, pressure overload induces
hypertrophy of atrial myocytes (EHRAS Class I). Collagen depos-
ition may also occur (EHRAS II– III) with more severe hypertension
causing LV hypertrophy and diastolic dysfunction (see Table 2).

Obesity
Several population-based studies have demonstrated a robust rela-
tionship between obesity and AF.182 – 184 A recent meta-analysis es-
timates a 3.5–5.3% excess risk of AF for every one unit of body mass
index increase.185

Left atrium dilation and dysfunction are known consequences of
the cardiomyopathy due to obesity.186 In a sheep model of obesity,
progressive weight gain over 8 months was associated with in-
creased atrial volume, pressure, and pericardial fat volume along
with atrial interstitial fibrosis, inflammation, and myocardial lipid-
osis.187 This was associated with decreased conduction velocity, in-
creased heterogeneity of conduction and a greater inducibility of
atrial fibrillation. With more sustained obesity, animals not only
demonstrate progressive atrial changes but also in areas adjacent
to pericardial fat there is infiltration of the atrial myocardium by
fat cells.188

Obese patients have higher left atrial volume and pressure with
lower left atrial strain associated with shorter refractoriness in the
LA and the PVs.189 A detailed evaluation of atrial changes associated
with human obesity showed an increase in the left atrial epicardial
fat, a global reduction in atrial conduction velocity, increased frac-
tionation, and preserved overall voltage but greater low-voltage
areas.190 The low-voltage areas were observed in regions adjacent
to epicardial fat depots.

Pericardial fat volume has been shown to be associated with AF
incidence, severity, and adversely effects ablation outcome.191,192

Epicardial adiposity is associated with altered 3D atrial architecture,
adipocyte infiltration into the myocardium, and atrial fibrosis that
may contribute to conduction heterogeneity that promotes
AF.193 –195

In the ovine model of chronic obesity, weight reduction is asso-
ciated with reduction in total body fat, atrial dilatation, and intersti-
tial fibrosis together with improved hemodynamics, atrial
connexin-43 expression and conduction properties that result in re-
duced vulnerability to AF.196 In humans, aggressive management of
weight and associated risk factors is associated with favourable
changes in pericardial fat volume, atrial size, myocardial mass as
well as electrophysiological and electroanatomical changes along
with reduced AF inducibility and burden.197 Furthermore, weight
loss in morbidly obese subjects is associated with reduced epicardial
fat.198 Weight reduction in obese individuals can result in regression
of LV hypertrophy, reduction in left atrial size and reduction in AF
burden/severity.199 –201 Histologically, fatty infiltrates (EHRAS Class
IVf) as well as collagen depositions are present (EHRAS III; see
Table 2).

Diabetes mellitus
Diabetes is an independent risk factor for development and pro-
gression of AF.202 In a rat model of diabetes mellitus, atrial tissue fi-
brosis deposit is associated with decreased conduction velocity and
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greater AF inducibility.203 Patients with abnormal glucose meta-
bolism have larger left atrial size, lower left atrial voltage, and longer
left atrial activation time compared with controls.204 Insulin resist-
ance is associated with increased left atrial size and structural
heterogeneity.205,206

Mitochondrial function is impaired, leading to oxidative stress, in
diabetic atria.207 Oxidative stress and activation of the advanced gly-
cation end-product (AGE)-AGE-receptor (RAGE) system mediates
atrial interstitial fibrosis up-regulation of circulating tissue growth
factors and pro-inflammatory responses.207,208 In addition, pro-
longed hyperglycaemic stress leads to accumulation of AGE-RAGE
and nitric oxide inactivation, leading to endothelial dysfunction and
myocardial inflammation.209

Hyperglycaemia and AGE–RAGE ligand interactions lead to de-
creased phosphorylation of connexin-43, potentially impairing
intercellular coupling.210 Advanced glycation is also related to al-
terations in myocardial calcium handling and hence contractility.211

These findings could explain the electrophysiological alterations
that serve as a central mechanism of the vulnerability to AF in
diabetes.212

Aggressive treatment of diabetes and adequate glycemic control
may prevent or delay the occurrence of AF, despite little direct evi-
dence of the effects of anti-diabetic drugs on AF. Peroxisome
proliferator-activated gamma receptor agonists may offer protec-
tion against AF beyond glycemic control, due to their anti-
inflammatory, antioxidant, and anti-fibrotic effects.213 However,
caution should be taken in extrapolating these experimental findings
to patients with diabetic cardiomyopathy. Histologically, changes in
the atrial myocytes are the initial findings without significant fibrosis
(EHRAS I). Later on the disease tissue appearance may change to
EHRAS Class III and EHRAS Class IV (see Table 2).

Atrial cardiomyopathy due to valvular
heart disease
Mitral valve disease (MVD) and aortic stenosis (AS) have been asso-
ciated with atrial structural remodelling and a propensity for AF. Al-
though secondary atrial cardiomyopathy is most often associated
with age, hypertension, and heart failure in developed countries,
RHD is responsible for over 40% of AF in the developing world.214

Mitral stenosis
In atria from 24 patients with isolated MS and normal sinus rhythm
undergoing mitral valvuloplasty, John et al.215 reported unchanged
or an increased effective refractory period (ERP), widespread and
site-specific conduction delay, myocyte loss and patchy electrical
scar, suggesting that structural changes and their electrophysiologic-
al consequences precede the development of AF. Factors associated
with these structural changes include direct myocardial effects
(pathognomonic inflammatory Ashoff bodies), ultrastructural
changes, atrial fibrosis, immunoactive cytokines, and matrix metallo-
proteinase remodelling (decreased MMP-1 and MMP-3).215 –217 Re-
verse atrial remodelling (an immediate reduction in LA pressure and
volume and an improvement in biatrial voltage; and further increases
in RA voltage 6 months later) was demonstrated in 21 patients with
isolated MS undergoing commissurotomy.218 In contrast, atrial re-
modelling did not reverse in patients with lone AF undergoing suc-
cessful AF ablation; indeed, substrate abnormalities progressed

(decreased voltage and increased regional refractoriness) over the
subsequent 6–14 months.219

Atrial enlargement and fibrosis are important determinants for the
development and maintenance of AF. Increases in collagen I and colla-
gen III (the latter which increase in cultured fibroblasts exposed to
mechanical stretch)220 were seen in patients with AF and MVD, but
only type I was seen in patients with lone AF.221 Cellular decoupling
and myocyte isolation, tissue anisotropy, and conduction inhomogene-
ities were considered the substrate for local re-entry and arrhythmia.

Mitral regurgitation
Verheule et al.222 found changes in atrial tissue structure and ultra-
structure 1 month after creating severe mitral regurgitation (MR) by
partial mitral valve avulsion. Effective refractory periods were in-
creased homogeneously and sustained AF (.1 h) was inducible in
10 of 19 MR dogs; in this model, there were no differences in either
atrial conduction pattern or velocities. Interstitial fibrosis, chronic
inflammation, and cellular glycogen accumulation were noted in
the dilated left atria, but myocyte hypertrophy, myolysis, and necro-
sis were absent. In contrast, myocyte hypertrophy, dedifferentiation,
and degeneration and fibrosis are described in pigs with surgically
created chronic MR223 and patients with MR.12,224

High-density oligonucleotide microarrays, enrichment analysis,
and a differential proteomics approach were used to characterize
the molecular regulatory mechanisms and biological processes in-
volved in the atrial myopathy that is seen in pigs with moderate to
severe chronic (6 and 12 months) MR.225 Renin-angiotensin-system
and peroxisome proliferator-activated receptor signalling pathways
and genes involved in the regulation of apoptosis, autophagy, oxida-
tive stress, cell growth, and carbohydrate metabolism were differen-
tially regulated.225 MLC2V (a marker of cardiac hypertrophy and
important in the regulation of myocyte contractility) had the highest
fold change in the MR pigs. Increased activity of a membrane-bound
containing NADPH oxidase in atrial myocytes, which correlated
with the degree of cellular hypertrophy and myolysis, was demon-
strated in patients with isolated severe MR. The authors suggest that
atrial stretch-induced NADPH oxidase activation and intracellular
oxidative stress contributes to apoptosis, atrial contractile dysfunc-
tion, and atrial dilatation.226

Correction of MR reverses many features of atrial remodelling
and corrects functional abnormalities. Early LA reverse remodelling
(45% reduction of mean LA maximal volume) and increased active
atrial emptying was found in the early (30 day) postoperative period
in 43 patients undergoing mitral valve surgery (successful repair or
replacement) for chronic organic MR227 and a similar improvement
at 6 months was reported by Dardas et al.228 Histologically, EHRAS
Class III is the most prominent finding in MVD, although the histo-
logical appearance of the tissue may vary substantially over time and
interindividually and, therefore, all EHRAS classes may be found in
the tissue (see Figure 1; Table 2).

Aortic stenosis
Although AS is associated with chronic AF,229 animal models of
AS and atrial remodelling are lacking. Kim et al.173 studied atrial elec-
trical remodelling in excised perfused hearts in a rat model of
increased afterload simulating AS (ascending aortic banding),
which produced LVH without systemic hypertension, heart failure,
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or neurohormonal activation. Banded hearts showed marked LA
hypertrophy and fibrosis at 14 and 20 weeks post-operatively.
The incidence and duration of pacing-induced AF was increased at
20 weeks and was associated with decreased mean vectorial con-
duction velocity and inhomogeneity of conduction, decreased ex-
pression of connexin-43, but without changes in ERP. Importantly,
atrial remodelling was not present at 8 weeks, when the greatest de-
gree of LVH was present.173

Left atrium volumes are higher in patients with AS compared with
controls and decrease significantly after valvuloplasty.230 Plasma
natriuretic peptide (ANP) levels are higher in symptomatic than
asymptomatic patients with AS231 and N-ANP levels predict atrial
remodelling and late (2 month) post-operative AF after surgery
for AS.232

Taken together, these data support the notion that substrate-
based AF is a consequence of the abnormal haemodynamics and at-
rial remodelling that accompany valvular heart disease. In this in-
stance, atrial remodelling is the consequence of multiple biological
processes that create structural and ultrastructural abnormalities
and a change in conduction (as opposed to refractoriness) that fa-
vours the development and maintenance of AF. Histologically, EH-
RAS Class III is the most prominent finding, although the histological
appearance of the tissue may vary substantially over time and inter-
individually (see Figures 1–3; Table 2). Atrial pathology often also
affects specialized conduction system tissues like the sinus and
AV nodes. However, these changes are beyond the scope of the
present consensus report, which focuses on atrial cardiomyocytes
and tissue.

Impact of atrial cardiomyopathies
on occurrence of atrial fibrillation
and atrial arrhythmia
Controversy about the mechanism of AF has been alive for over 100
years, yet given the continued increase in worldwide burden of AF,233

ongoing investigation will drive improved treatment and prevention.
Currently, there are two opposing sides in the debate about re-
entrant mechanisms in AF. On one side are those who promote var-
iants of the original idea of Gordon Moe that fibrillation, whether at-
rial or ventricular, results from the continued random propagation of
multiple independent electric waves that move independently
throughout the atria.234,235 On the other side are those who adhere
to the theory that fibrillation is a consequence of the continued activ-
ity of a few vortices (rotors) that spin at high frequencies, generating
‘fibrillatory conduction’.236,237 In either case, arrhythmia maintenance
is favoured by abbreviated APD/refractory period.13,238,239 Another
pre-requisite of the multiple wavelet hypothesis is that there should
be slow conduction, which is not the case for rotors. According to
rotor theory, slowing of conduction is established dynamically by
the curvature of the rotating wave front, which is steepest near the
rotation centre, at which refractory period is briefest and conduction
velocity is slowest.240 Which of the above two mechanisms prevails in
human AF has not been fully established, yet.241

Regardless of the mechanism that maintains it, AF leads to high-
frequency atrial excitation, which if sustained, results in ion-channel
remodelling that further abbreviates the APD and refractory period

to boost its stabilization. Such AF-induced electrical remodelling is
reversible in the short term (minutes, hours, or days), but less so
when lasting months or years. For a detailed discussion of
AF-induced remodelling, see chapter 3. How these changes contrib-
ute to AF perpetuation in the long term has not been fully
determined.

In a recent study using a sheep model of persistent AF induced by
intermittent atrial tachypacing there was a progressive spontaneous
increase in the dominant frequency (DF) of AF activation after the
first detected AF episode.240,242 The results suggested that, unlike
the tachypacing induced electrical remodelling that can occur over
minutes or hours, there existed a protracted, slowly progressing
electrical and structural remodelling secondary to AF that sustains
for days or weeks.240,242 In addition, a consistent left-vs.-right atrial
DF difference correlated with the presence of rotors, DF gradients,
and outward propagation from the posterior LA during sustained
AF in the explanted, Langendorff-perfused sheep hearts,242 and an
underlying basis is seen in humans.243 The DF of non-sustained AF
increases progressively at a rate (dDF/dt) that accurately predicts
the transition from episodic, non-sustained AF to persistent, long-
lasting AF.126 Although fibrosis developed progressively,126 it is un-
known what role if any fibrosis played in rotor acceleration or sta-
bilization. Other studies using different animal models have also
demonstrated that long-term atrial tachypacing results in atrial fi-
brosis,244 with concomitant release of cytokines that are known
to modify atrial electrical function.245 In the sheep model, atrial
structural changes leading to PLA enlargement likely made rotors
less likely to collide with anatomic boundaries, thus contributing
to their stabilization and AF persistence.242,246

Distinct stresses of the atrial myocardium could contribute to the
transformation of atrial cardiomyopathy into an arrhythmogenic
substrate for AF. For instance, mechanical stress is a major regulator
of cardiac electrical properties. The two atria are particularly sensi-
tive to changes in mechanical coupling due to their ‘reservoir’ pos-
ition and their function of ‘pressure sensor’ with a specific endocrine
role, i.e. the secretion of natriuretic peptides. Many mechanosen-
sors are expressed in the atrial myocardium and contribute to the
interplay between membrane electrical properties, mechanical
stresses, and myocardial wall deformation.247 Recently, it has been
reported that shear stress of atrial cardiomyocytes regulates the
surface expression of voltage-gated potassium channels via the
stimulation of the integrins that link myocytes to the extracellular
matrix.248,249 During atrial haemodynamic overload, the mechano-
sensor signalling pathways, are constitutively activated, such that
myocytes are no longer able to respond to shear stress. This pro-
cess results in the acceleration of atrial repolarization and could
contribute to AF vulnerability.249

Oxidative stress is also thought to be important in AF-induced at-
rial remodelling leading to cardiomyopathy and AF perpetuation.250

However, the manner in which reactive oxygen species (ROS) me-
diate atrial ionic remodelling is inadequately understood. NOX2/4
activity increases in fibrillating atria and is a potential source of
ROS in AF. Mitochondrial ROS is potentially another important
source of oxidative stress; mitochondrial dysfunction has been de-
monstrated in AF. It remains to be determined whether atrial oxida-
tive stress directly affects atrial APD and refractoriness and thus
contributes to rotor acceleration and stability in AF. Several
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sarcolemmal ionic currents are directly or indirectly modulated by
ROS,251 but the relevance of these mechanisms to human AF has
not been demonstrated.

Sustained AF activates the release of pro-inflammatory cytokines
and hormones related to cardiovascular disease and tissue injury,
including angiotensin-II (Ang-II), tumour necrosis factor (TNF)-a,
interleukin (IL)-6, and IL-8.252 Pro-inflammatory stimuli such as
NOX-derived ROS, growth factors, and other hormones has been
demonstrated to have a role in Ang-II function.253 However, the pre-
cise molecular modifications of the putative signalling targets of ROS
after Ang-II stimulation are yet to be identified. Knowing which NOXs
are activated by Ang-II in the normal atria may help generate better
interventions aimed at preventing AF associated with Ang-II activa-
tion. Ang-II is a well-known trigger of fibroblast activation and differ-
entiation into myofibroblasts, which are key factors in the generation
of fibrosis. Pro-inflammatory cytokines also promote ion-channel
dysfunction, which together with myocyte apoptosis and extracellular
matrix remodelling predisposes patients to AF.

Recently, atrial adipose tissue has emerged as a potential player in
the pathophysiology of AF.3,254 In addition to its paracrine effects,192

adipose tissue can infiltrate the subepicardium of the atrial myocar-
dium and become fibrotic255 contributing to the functional dissoci-
ation of electrical activity between epicardial layer and the
endocardial bundle network, favouring wavebreak, and rotor forma-
tion. Lone AF or rapid atrial pacing promotes adipogenesis through
the regulation of genes specific to metabolic adaptation. Therefore,
it is possible that the accumulation and infiltration of adipose tissue
reflects metabolic stress secondary to excessive work of the atrial
myocardium.191 Furthermore, adipose tissue can induce fibrosis
and alter gene-expression patterns.195,256

Atrial cardiomyopathies, systemic
biomarkers, and atrial
thrombogenesis

Atrial cardiomyopathies and systemic
biomarkers
Atrial inflammation and inflammatory biomarkers
Infiltration of neutrophils, macrophages, and lymphocytes accom-
panies surgical injury or pericarditis, promoting the development
of atrial fibrosis, resulting in heterogeneous and slowed conduction,
a risk factor for re-entrant arrhythmia.257 – 261 This provides a mech-
anistic link between inflammatory activation and atrial arrhythmo-
genesis. Anti-inflammatory interventions such as prednisone are
effective in preventing neutrophil infiltration in sterile pericarditis
and in suppressing pacing-inducible atrial flutter,262 and steroid pre-
treatment has been found to reduce the incidence of postoperative
AF in an appropriately powered randomized, clinical trial.263 An on-
going trial studies the effect of colchicine (NCT 001128427).

In a mouse model of persistent hypertension, Ang-II infusion
promotes increased atrial abundance of myeloperoxidase (MPO, a
neutrophil and macrophage oxidant-generating enzyme) and
promotes atrial fibrosis.261 In MPO knockout mice, the profibrotic
response to A-II infusion was eliminated. Angiotensin II and
endothelin-1 are linked to inflammatory and proarrhythmogenic

atrial remodelling.2,264 –266 This evidence suggests that inflammatory
cell infiltration has an important role in promoting the creation of a
substrate for AF, as a result of conduction heterogeneity and slow-
ing, both in the setting of cardiac surgery and beyond.

Systemic inflammatory activation in atrial fibrillation
In addition to haemodynamic stress-induced cellular inflammation
of the atria, a cross-sectional study demonstrated that AF was asso-
ciated with higher plasma levels of C-reactive protein (CRP), a sen-
sitive but non-specific biomarker of systemic inflammation
produced by the liver.267 A follow-up secondary analysis of the par-
ticipants Cardiovascular Health Study participants further revealed
that elevated CRP predicted incident AF.268

Subsequent studies have demonstrated relationships between
several different serologic markers of inflammation and AF, including
IL-6,269 TNF-a,270 aldosterone271 and simple white blood cell
counts.272 Analyses of multiple inflammatory biomarkers within
the same study have suggested that IL-6 and osteoprotegerin273

may be especially important. The relationship between IL-6 and
AF may be mediated by left atrial enlargement.269

While evidence that inflammatory markers presage the develop-
ment of AF has been replicated,268,274 there are also multiple studies
to demonstrate that atrial arrhythmias likely contribute to inflamma-
tion: specifically, cardioversion of AF275 as well as ablation of either
AF276 or atrial flutter277 has resulted in a decrease in inflammation.
Indeed, Marcus et al. demonstrated that the rhythm at the time of
the blood draw (AF vs. sinus) was an important determinant in de-
tecting an elevated CRP or IL-6 level.278 Taken together, these data
suggest that the relationship between inflammation and AF may be
bidirectional and progressive.

Intra-atrial sampling studies
As the enhanced risk of stroke in the setting of AF has been attrib-
uted to status of blood flow and in particular thromboemboli origin-
ating in the left atrial appendage, there has been an interest in
determining whether peripheral blood can adequately reflect the
hypercoagulability that may be present locally within the atria (see
Figure 10).279 The first intra-atrial sampling study failed to identify
evidence of statistically significant differences between several mar-
kers of hypercoagulability in right and left atrial vs. femoral vein and
arterial samples among persistent AF patients with MS;280 of note,
the same markers revealed statistically significant differences when
compared with normal controls without AF.279 In contrast, a subse-
quent study demonstrated that platelet activation acutely increased
in coronary sinus blood in AF, while systemic platelet activation
(obtained from the femoral vein) revealed no such change.281

A similar approach to multi-site sampling has also been applied to
better understand the relationship between inflammation and AF.
Liuba et al. found higher levels of IL-8 in the femoral vein, right at-
rium, and coronary sinus than the left and right upper PVs among
eight permanent AF patients (without any such differences 10 par-
oxysmal AF patients or 10 controls).280

Practical implications and use of systemic biomarkers
Systemic biomarkers have been used to predict development of AF
and/or its complications (Table 5). Various studies have examined
the role of inflammatory indices, natriuretic peptides, injury markers,
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etc. in predicting incident AF, especially in the post-surgery setting.
Many of these biomarkers are non-specific, and high levels may reflect
infection or sepsis, an acute phase reaction, etc.282,283,284

Adding BNP and CRP to a prediction score derived from
CHARGE-AF (which included data from the Atherosclereosis
Risk in Communities Study (ARIC), Cardiovascular Health Study
(CHS), the Framingham Heart Study, the Age, Gene/Environment
Susceptibility Reykjavik Study (AGES), and the Rotterdam Study)
and utilizing age, race, height, weight, systolic and diastolic blood
pressure, current smoking, use of antihypertensive medication, dia-
betes, history of myocardial infarction and history of heart failure285

improved the statistical model.286 Once again, the addition of CRP
did not meaningfully improve the model.

In another study evaluating the relationship of extracellular ma-
trix modulators (matrix metalloproteinases, MMPs, and their tissue
inhibitors, TIMPs) and AF risk, only elevated MMP9 levels were sig-
nificantly associated with AF risk.287 Proteases having desintegrin
and metalloprotease activities (ADAM) are related to atrial dilata-
tion and thereby influence mechanical performance of the atria.288

The clinical benefit of considering biomarkers associated with AF
is questionable unless there is clear evidence of a direct benefit in AF
risk prediction and management- this has not been achieved to date.

Prothrombotic indices–coagulation,
platelets
Over 150 years ago, Virchow proposed a triad of abnormalities that
contributed to thrombus formation (thrombogenesis), that is,

abnormalities of vessel wall, abnormal blood flow and abnormal
blood constituents (Figure 10). In the setting of AF, abnormalities
of vessel walls are evident by the association of thromboembolism
with structural heart disease (eg. mitral valve stenosis) and complex
aortic plaque, as well as endothelial damage/dysfunction, whether
recognized by biomarkers (eg. von Willebrand factor (vWF), tissue
plasminogen activator, tPA), immunohistochemistry studies of the
left atrial wall, electron microscopy, or by functional studies (eg.
flow mediated dilatation).289 Abnormal blood flow in AF can be vi-
sualized by spontaneous echocontrast in the LA, as well as low left
atrial appendage Doppler velocities. Abnormal blood constituents
in AF are evident from abnormalities of coagulation, platelets,
fibrinolysis, inflammation, extracellular matrix turnover, etc. that
are all directly or indirectly associated with thrombogenesis, or a
predisposition to the latter. While abnormalities of platelets are
often evident in AF, they may be more reflective of associated vas-
cular disease or comorbidities than of AF per se.290,291 Indeed,
thrombus obtained in AF is largely fibrin-rich (‘red clot’) compared
with arterial thrombus, which is largely platelet-rich (‘white clot’),
providing a mechanistic explanation for the role of anticoagula-
tion therapy, rather than antiplatelet therapy for AF-related
thromboembolism.291,292

The concept of AF being a prothrombotic or hypercoagulable
state was first proposed in 1995.293 Many prothrombotic indices
in AF have been related to subsequent stroke and thromboembol-
ism, whether in non-anticoagulated or anticoagulated subjects
(Figure 10). Initial studies showed that coagulation-related
factors, such as fibrin D-dimer (an index of fibrin turnover and

Figure 10 Concept of ‘endocardial remodelling’ in fibrillating atria. In accordance to Virchow’s triad hypercoagulability, flow abnormalities, and
endothelial changes must co-exist to induce thrombogenesis at the atrial endocardium. Molecular studies have revealed substantial endocardial
changes in left atrial tissue samples. Prothrombogenic factors (vWF, adhesion molecules like VCAM-1, P-selectin etc; green) are expressed at the
surface of endothelial cells causing an increased adhesiveness of platelets and leucocytes to the atrial endocardium. This initiates atrial thrombo-
genesis at the atrial endocardium. Several clinical factors like diabetes mellitus, heart failure ageing etc. (CHA2DS2VASc Parameters) increase
molecular alterations (oxidative stress pathways etc.) within myocytes and endothelial cells, and thereby, increase the expression of prothrombo-
genic factors. These alterations are not directly related to the presence of absensce of atrial fibrillation in the surface ECG, and therefore, help to
explain, why thrombogenesis is increased even during episodes of sinus rhythm.
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thrombogenesis) were related to stroke risk strata as well as an ad-
verse prognosis from thromboembolism, whether or not patients
were anticoagulated.294 – 297 In contrast, there was no prognostic ad-
vantage of platelet indices.295,298,299

Prediction of thrombogenesis
Addition of vWf refines clinical risk stratification in AF, first shown in
the non-anticoagulated or suboptimally anticoagulated patients
from the SPAF study.300 More recently, vWf has been related to
thromboembolism as well as bleeding risks in anticoagulated AF pa-
tients.301 Ancillary studies from large Phase 3 anticoagulation trials

have reported prognostic implications for increased levels of
D-dimer, troponin, natriuretic peptides, and novel biomarkers
(e.g. GDF15).302 – 304 Many of these studies have been performed
in selected clinical trial cohorts, and the prognostic role in risk strati-
fication requires prospective testing in unselected large ‘real-world’
cohorts with a broad range of stroke risk and renal function. As in
the case of AF prediction, evidence for the additive value of bio-
markers for stroke risk prediction from large prospective non-
anticoagulated ‘real-world’ cohorts is limited.305 Endocardial
thrombogenic alterations in diseased atria, which appear to be re-
lated to oxidative stress, appear to contribute to clot formation,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5 Coagulations markers in atrial fibrillation

Study AF group(s) Control group(s) Significant abnormalities found in AF
(increase in coagulation markers)*

Gustafsson
(1990)507

20 (with stroke)
20 (without stroke)

40 (normal without
stroke)

20 (with stroke)

D-dimers, vWF irrespectively of history of stroke

Kumagai (1990)508 73 73 D-dimers

Asakura (1992)509 83 (normal) PF1+2, TATIII complex

Sohara (1994)510 13 (paroxysmal) (normal) TATIII complex (no difference in D-dimers),

Lip (1995)511 87 158 D-dimers, vWF

Lip (1996)512 51 26 (healthy) D-dimers

Kahn (1997)513 50 (without prior stroke)
25 (with prior stroke)

31(without prior
stroke)

11 (with prior stroke)

Fibrinogen in AF without stroke vs. controls without stroke
(no difference was seen between groups with prior stroke)

Heppell (1997)514 19 with thrombus in LA
90 without thrombus in LA

not applicable D-dimers, vWF, TATIII complex if LA thrombus

Shinohara (1998)515 45 (non-valvular) not applicable D-dimers, TATIII complex in patients with low vs. high LAA velocity

Feinberg (SPAF III)
(1999)516

1531 not applicable No association of PF1+2 with thromboembolism

Mondillo (2000)517 45 35 (healthy) D-dimers, vWF, s-thrombomodulin

Fukuchi (2001)518 16 27 (cardiac without AF) vWF in LA appendage tissue

Conway (2002)296 1321 vWF in high-risk group for stroke

Kamath (2002)519 93 50 (normal) D-dimers

Vene (2003)520 113 D-dimers in patients having cardiovascular events vs. no event

Nakamura (2003)521 LA appendage tissue of 7
non-valvular

4 non-cardiac death vWF, TF

Conway (2003)297 994 not applicable vWF not associated of with risk of stroke,
vWF independently associated with vascular events

Kamath (2003)522 31 (acute onset)
93 (permanent)

31 (healthy) Haematocrit raised in acute AF
D-dimers in permanent AF (but not in acute AF)

Sakurai (2004)523 28 (AFL) 27 D-dimers if impaired LAA function

Inoue (2004)524 246 (non-valvular) 111 D-dimers in patients having risk factors, PF1+2 (NS)

Kumagai (2004)525 16 (post mortem) vWF and protein in patients with enlarged atrium

Marin (2004)526 24 (acute onset)
24 (chronic)

24 (CAD patients in
sinus rhythm)

24 (healthy)

D-dimers, vWF, s-thrombomodulin (no longer different after
cardioversion)

Nozawa (2004)527 509 111 (healthy) D-dimers, PF1+2 (NS)

Freestone (2005)528 59 40 (healthy) vWF

Nozawa (2006)295 509 (non-valvular) D-dimers (but not PF1+2) predictive for thromboembolic events

Ohara (2007)294 591 (non-valvular) 129 D-dimers, PF1+2, platelet factor 4, b-thromboglobulin
D-dimers, PF1+2 (correlated with presence of risk factors for stroke)

AF, atrial fibrillation; AFL, atrial flutter; CAD, coronary artery disease; LA, left atrial; LAA, left atrial appendage; NS, non-significant; vWf, von Willebrand factor; PF1+2,
prothrombin fragment 1 + 2; TATIII, thrombin-antithrombin III; TF, tissue factor; s-thrombomodulin, soluble-thrombomodulin;*Significantly different in AF group, unless otherwise
indicated.
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particularly in the left atrial appendage.306 –310 Thus, the impact and
the relation between EHRAS Classses and the extend of endocar-
dial thrombogenic alterations have to be assessed in future studies.
Interestingly, duration of AF does not correlate with the extent of
abserved endocardial changes.309

Imaging techniques to detect atrial
cardiomyopathies mapping and
ablation in atrial cardiomyopathies
It is well established that an enlarged LA is associated with adverse
cardiovascular outcomes.311 – 316 In the absence of MVD, an in-
crease in LA size most commonly reflects increased wall tension
as a result of increased LA pressure,317 – 320 as well as impairment
in LA function secondary to atrial myopathy.321,322 A clear relation-
ship exists between an enlarged LA and the incidence of atrial fibril-
lation and stroke,323 – 332 risk for overall mortality after myocardial
infarction,321,322,333,334 risk for death and hospitalization in patients
with dilated cardiomyopathy,335 – 344 and major cardiac events or
death in patients with diabetes mellitus.345 left atrium enlargement
is a marker of both the severity and chronicity of diastolic dysfunc-
tion and magnitude of LA pressure elevation.317 –320 A recent con-
sensus report on multi-modality imaging for AF patients summarizes
the current status of atrial imaging in more detail.346

Echocardiography
Echocardiography is the imaging modality of choice for screening
and serially following patients with diseases involving the LA morph-
ology and function.347

For assessment of atrial size, most widely reported is the linear
dimension in the parasternal long-axis view using M-mode or 2 de-
layed enhancement (DE).324 – 339,345,347 – 349 However, due to the
complex 3D nature of the atrium and the non-uniform nature of at-
rial remodelling, this measurement frequently does not provide an
accurate picture of LA size.350 – 354 Thus, when assessing LA size
and remodelling, the measurement of LA volume is a more powerful
prognostic indicator in a variety of cardiac disease states.329,331,333 –

339,345,347– 360 Two-dimensional echocardiographic LA volumes are
typically smaller than those reported from computed tomography
or cardiac magnetic resonance imaging (CMR).361 – 365 Left atrium
volume from 2D images is best measured using the disk summation
algorithm because it includes fewer geometric assumptions.366,367

The advent of 3-D ECHO has improved the accuracy of ECHO vol-
ume measurements which correlate well with cardiac computed
tomography368,369 and magnetic resonance imaging.370,371 Com-
pared with 2D assessment of LA volume, 3DE also has superior
prognostic prediction.372,373

The recommended upper normal indexed LA volume is 34 mL/m2

for both genders which fits well with a risk-based approach for deter-
mination of cut-off between a normal and an enlarged LA.323,357–359

Left atrial function by Doppler
echocardiography
Left atrium function can be assessed by pulsed-wave Doppler mea-
surements of late (mitral A) diastolic filling. Multiple studies have
used this parameter as an index of LA function assessment, but it

is affected by age and loading conditions.317,374– 382 The PV atrial re-
versal velocity has also been used as a measurement of LA func-
tion.317,377,379 – 382 In the presence of reduced LV compliance and
elevated filling pressures, atrial contraction results in significant
flow reversal into the PVs.80,81 Studies have also demonstrated
that Doppler tissue imaging can be used as an accurate marker of
atrial function.383,384

New echocardiographic techniques
Two-dimensional speckle-tracking echo has been used as a more
sensitive marker to detect early functional remodelling before ana-
tomical alterations occur.385– 400

Strain (S) and strain rate (SR) imaging provide data on myocardial
deformation by estimating spatial gradients in myocardial veloci-
ties.385,388,392,393,401 – 405 This technique has been used as a surro-
gate of LA structural remodelling and fibrosis.388 – 393 Interestingly,
LA dysfunction with changes in strain and strain rate has been ob-
served in patients with amyloidosis in the absence of other echocar-
diographic features of cardiac involvement.402 Abnormalities in
atrial strain have been observed in diverse conditions, including
AF, valvular pathology, heart failure, hypertension, diabetes, and
cardiomyopathies.388,389,396 – 400 Population-based studies have
demonstrated the prognostic value of LA strain analysis for long-
term outcome.388,394

Less research and fewer clinical outcomes data are available on
the quantification of RA size. Right atrial volumes are also underes-
timated with 2D echocardiographic techniques compared with
3DE.343,406,407

Cardiac computed tomography
Cardiac CT may be used for accurate assessment of atrial volumes.
Volumetric data from cardiac computed tomography (CCT) are
comparable to data generated by CMR and 3D echocardiographic
imaging and is superior to 2D echocardiography.371 The LA volume
prior to catheter ablation and the presence of asymmetry of cham-
ber geometry predicts the likelihood of maintaining sinus rhythm
post-procedure.408 As the LA enlarges, the shape of the LA roof ini-
tially becomes flat and then becomes coved, and this progression
may correlate with development of non-PV substrate in patients
undergoing AF ablation.409

CCT may also be used to screen for thrombus prior to AF abla-
tion. The diagnostic accuracy of CT has been studied by multiple
groups, with a systematic review of 19 studies and 2955 patients re-
porting a sensitivity and specificity of 96 and 92%, respectively,
translating to a positive predictive value of 41% and a negative pre-
dictive value of 99%.410 Diagnostic accuracy increased to 99%, with
100% specificity, when delayed imaging was performed. An advan-
tage of using CT imaging to exclude thrombus is that CCT is fre-
quently performed prior to AF ablation for integration into the
electroanatomic mapping systems routinely used during AF ablation
procedures. CCT can also provide accurate information about PV
anatomy and variants and correlates well with CMR in that
regard.411

Magnetic resonance imaging of the atrium
Over recent years CMR has been used in clinical and research set-
tings to provide gold standard volumetric assessments of chamber
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structure and function. Drawbacks are that CMR is expensive and
has more limited availability than echocardiography. Recently,
contrast-enhanced CMR with gadolinium has been used as a tech-
nique to detect atrial fibrosis.412 Although these methods are still
in relatively early stages and have not been extensively reproduced,
the ability to identify early degrees of atrial structural change would
no doubt enhance our ability to detect varying degrees of remodel-
ling that may not be as clear from volumetric or functional assess-
ment. In addition to late-gadolinium-enhanced (LGE) CMR to
detect replacement fibrosis, post-contrast T1 mapping413,414 has
been used to quantify diffuse interstitial fibrosis. Both techniques
have been correlated with bipolar voltage measured during invasive
mapping.412 However, these techniques require specialized post-
imaging processing. While they are commonly used for ventricular
imaging, they have not been widely employed for atrial imaging be-
cause of the technical challenges in achieving adequate image reso-
lution in the thin-walled atrium.415

Using a systematic scoring system for the extent of delayed en-
hancement, a recently-published multicentre study has related the
extent of LGE CMR detected fibrosis to the outcome of AF abla-
tion.416 The risk of recurrent AF increased from 15% for stage I fi-
brosis (,10% of the atrial wall) to 69% for stage IV fibrosis (≥30%
of the atrial wall). The authors suggested that CMR quantification of
fibrosis may play a role in the appropriate selection of patients most
likely to benefit from AF ablation. Late-gadolinium-enhanced CMR
has also been used to predict development of sinus node dysfunc-
tion,417 stroke risk,418 and progression of atrial fibrillation from par-
oxysmal to persistent.419 However, various studies have highlighted
the need to further improve the methods of accurately identifying
replacement fibrosis and to improve reproducibility of data analysis
before LGE CMR can be considered a routine clinical tool.420,421

Recently, a number of studies have used CMR DE late gadolinium
enhancement (LGE) in order to non-invasively characterize the ex-
tent and distribution of scarring present following AF ablation.422–424

Several studies observed that patients with more extensive scar at 3
months (or greater percentage scar around the PV circumference)
had a lower AF recurrence rate.423,425 Another study showed a cor-
relation between measured contact force at the time of ablation, and
the extent of CMR determined scar development.426 Other studies
have shown a concordance between scar around the PVs and low-
voltage regions on invasive electroanatomic mapping (EAM).427,428

Isolation of PVs at repeat procedures could be achieved guided by
the imported MR image to identify the gaps.427,428 However, other
studies found no association between CMR scar gaps and mapped
PV reconnection sites. A study in 50 paroxysmal AF patients under-
going either wide area or ostial ablation found that the proportion of
patients in whom CMR could correctly identify the distribution of ab-
lation lesions varied from as low as 28% to 54% depending on the
technique used.429 These authors concluded that LGE imaging of at-
rial scar was not yet sufficiently accurate to reliably identify ablation
lesions or to determine their distribution. Whether CMR will have
the resolution to detect such focal regions where scar is incomplete
remains uncertain. Of note, Harrison et al. used an animal model to
correlate lesion size on CMR with lesion volume at pathology. The
correlation depended critically on the definition of pixel intensity
used to define scar with small changes in definition leading to large
changes in estimated scar volume.415

Imaging with electroanatomic mapping
Electroanatomic mapping systems have become the standard for in-
vasive substrate characterization of atrial cardiomyopathies. Using
various technologies, these systems allow for rapid characterization
and reproduction of atrial anatomy with 3-D display rendering. Ana-
tomic variations in PV anatomy, including common ostium or add-
itional veins, may be identified. Visualization software allows for
accurate measurements of atrial distances430 and gross volumetric
data but assessment of venous diameter may be suboptimal owning
to venous susceptibility to distortion. Anatomic imaging of the atria
may be enhanced with the co-registration of DICOM images from
previously acquired cardiac MRI or CT or with the use of real-time
contrast angiography or intracardiac echocardiogram.

While EAM allows for anatomic reproduction of the atria, it also
enables the assessment of the atrial substrate through the geograph-
ic display of unipolar and bipolar signal amplitude data, as well as
other signal characteristics, on rendered atrial surfaces. Regions of
low-voltage, electrical silence, fractionation, or double potentials
are reputed to correlate with underlying atrial fibrosis, surgical
patches, or scar. In the same way, electrical activation of the atrium
may be imaged allowing for assessment of regional changes in con-
duction velocity431 that may be proarrhythmic and support the per-
petuation of atrial fibrillation. The use of EAM for activation mapping
of atrial arrhythmia will be discussed in the subsequent section on
ablation techniques.

Electroanatomic mapping has been used to image the electroana-
tomic substrate of atrial cardiomyopathy associated with sinus node
disease,432 rheumatic MS,215 atrial septal defect,218,431 CHF,433 ob-
structive sleep apnoea,117 and ageing.167 It has been a powerful re-
search tool that has enhanced our understanding of the atrial
substrate in patients with paroxysmal and persistent atrial fibrillation
and74,434 those who have failed initial PV antrum isolation.435

Unlike cardiac MR, CT, or echocardiography, EAM requires inva-
sive catheterization and mapping. However, despite recent ad-
vances in MRI techniques that allow for imaging atrial scar, EAM
imaging arguably has a great clinical feasibility and superior ability
to image and to define the atrial substrate that leads to the develop-
ment of atrial fibrillation. A recent consensus report on multi-
modality imaging for AF patients is a useful detailed reference.346

Ablation of atrial tachyarrhythmia
Numerous single-centre, randomized studies and larger multicentre
observational registries have demonstrated the superiority of AF ab-
lation over drug therapy for maintenance of sinus rhythm. However,
late recurrences are common and associated with more advanced
atrial substrate associated with structural heart disease.436– 446

It is in this context that it is important to consider the various
types of underlying atrial cardiomyopathy and how they may affect
ablation outcomes. This is timely, as it has recently been observed
that lone AF is a rapidly disappearing entity as we recognize condi-
tions such as sleep apnoea, obesity, endurance exercise etc. previ-
ously not suspected of being causally associated with atrial
fibrillation.447 In addition, emerging data suggest that treating these
underlying causes may be central to improving long-term ablation
outcomes.199,200,448,449 In addition, LA ablation procedures may
alter atrial size, structure, and mechanical atrial function. Catheter
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ablation may thus influence ongoing pathologies and atrial
thrombogenesis.450,451

Mapping studies have demonstrated a common electrophysio-
logical endpoint for a range of such conditions affecting the atrium
either primarily or secondarily, many of which have been shown to
be associated with atrial remodelling characterized by conduction
slowing and myocardial voltage reduction suggesting fibro-
sis.117,167,177,433,452,453 Magnetic resonance imaging techniques
attempting to characterize the extent of myocardial fibrosis
have demonstrated that this appears to be the strongest independ-
ent predictor of AF recurrence after ablation.416,454 Whether the
EHRAS classification has value for informing catheter ablation in hu-
man atria remains to be determined.

Age and atrial fibrillation ablation
Increasing age has been shown to be associated with increasing atrial
fibrosis in both basic and clinical studies.167,455 Numerous studies
have evaluated ablation outcomes in ageing patients (variously de-
fined as .65 through to .80).444,445,456– 462 Observational studies
have consistently reported high multiple procedure success rates at
12 months of up to 80% in older patients. Conflicting data exist re-
garding outcomes in comparative studies with one study demon-
strating a reduced success rate in patients over 65 years while
another study showed similar efficacy in patients over the age of
80 years to the younger cohort.461,463

Hypertension
Hypertension is another well-recognized risk factor for develop-
ment of atrial fibrillation. Mapping studies have demonstrated the
presence of a more advanced atrial substrate in hypertensive pa-
tients compared with controls.177,464 Hypertension has been shown
to be a risk factor for recurrence of AF after AF ablation in numer-
ous studies on univariate analysis, but it is less clear whether this is
independent of factors such as atrial size. Recent preliminary studies
have suggested that aggressive treatment of hypertension improves
post-ablation outcomes.200,464,465

Heart failure and atrial fibrillation ablation
Contractile dysfunction has similarly been associated with advanced
atrial remodelling and predisposition to atrial fibrillation both in ba-
sic and in clinical studies.113,433 Numerous studies have evaluated
the efficacy of catheter ablation of both paroxysmal and persistent
atrial fibrillation with significant impairment of systolic func-
tion.437,466– 473 The weight of evidence is that sinus rhythm can be
successfully achieved in 50–80% of patients although repeat proce-
dures are common and follow-up periods are usually not more than
12 months. Successful ablation has been associated with significant
improvements in ejection fraction and reduction in atrial size in the
majority of studies.470,474

Metabolic syndrome and obesity
A number of studies have evaluated the impact of the metabolic syn-
drome on catheter ablation outcomes in atrial fibrillation pa-
tients.475 – 480 Although the data are mixed, the weight of studies
and a systematic review477 suggest a higher risk of AF recurrence.
In the ARREST AF study, patients with BMI over 27 undergoing
AF ablation had a much lower risk of recurrence if weight loss

was achieved and maintained.200 Observational studies have de-
monstrated a significantly lower risk of recurrent AF in patients
with treated compared with untreated OSA.481

Impact of diabetes on ablation outcomes
Several studies have documented an increased recurrence rate of
atrial fibrillation after an ablation procedure in patients with diabetes
mellitus.204,475,482 An abnormal atrial substrate and non-PV triggers
have been shown to underlie this worse outcome.

Role of myocarditis
Markers of inflammation such as CRP and IL-6 have been linked to
risk of AF.267,483 – 485 Recently, giant-cell myocarditis involving only
the atria has been shown to result in atrial fibrillation with enlarged
atria.149 Patients with apparently lone atrial fibrillation frequently
demonstrate histological findings consistent with an atrial myocardi-
tis;486 and those with past myocarditis may have atrial electrical scar,
conduction abnormalities, or atrial standstill.146,487 – 489 Baseline
CRP levels have been associated with the risk of recurrent AF after
catheter ablation.278 Recently, colchicine has been used to prevent
atrial fibrillation recurrence after PV isolation.490 It is also possible
that AF in itself can result in inflammation and the development of
an ‘atrial myocarditis’.491

Impact of atrial fibrillation duration on
atrial myopathy and atrial fibrillation
ablation outcomes
Longitudinal studies in AF patients have demonstrated clinical pro-
gression of AF over time in a significant proportion with risk strongly
associated with drivers such as increasing age, structural heart dis-
ease, and hypertension.492 Chronic AF results in structural change
with a recent study showing that in proportion to AF burden, atrial
remodelling may progress significantly even over a time period as
short as 1 year.

Numerous studies have demonstrated that atrial size and occa-
sionally mechanical function may improve following ablation,493

but at least one invasive study showed no improvement in atrial
electrophysiology 6 months after successful ablation.219 Over-
whelmingly, studies evaluating long-term outcomes after ablation
of persistent atrial fibrillation have demonstrated lower rates of pro-
cedural reversion to sinus rhythm and higher late recurrence rates
reflecting more advanced atrial substrate.

Impact of ongoing atrial fibrillation on
electrical and structural remodelling
It is now well known that in the presence of an appropriate heter-
ogenous AF substrate, a focal trigger can result in sustained
high-frequency re-entrant AF drivers, named rotors. The waves
that emerge from these rotors undergo spatially distributed frag-
mentation and so give rise to fibrillatory conduction. When high-
frequency atrial activation is maintained for at least 24 h, ion-channel
remodelling changes the electrophysiologic substrate, promoting
perpetuation of re-entry and increasing the activity of triggers, fur-
ther contributing to AF permanence.494 Atrial fibrillation itself leads
to remodelling, causing electrophysiological (electrical), contractile,
and structural changes.495,496 Although AF can typically be reversed
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in its early stages, it becomes more difficult to eliminate over time due
to such remodelling.238,497 Dominant-frequency analysis points to an
evolution of mechanisms in AF patients, with PV sources becoming
less predominant as AF becomes more persistent and atrial remodel-
ling progresses.498 The data suggest that in patients with long-standing
persistent AF, atrial remodelling augments the number of AF drivers
and shifts their location away from the PV/ostial region.

Impact of catheter ablation on atrial
pathology
Several studies have examined LA size before and after catheter ab-
lation and have demonstrated a 10–20% decrease in the dimensions
of the LA after catheter ablation of AF.499,500 Although the precise
mechanism of this decrease in size is not known, it appears consist-
ent with reverse remodelling. It has been suggested that earlier ag-
gressive intervention to maintain sinus rhythm, including AF ablation
if needed, may aid to prevent ‘chronicization’ of AF and improve
long-term outcomes.501 A large-scale multicentre trial is presently
testing this idea.502

The true impact of atrial cardiomyopathies on the success of
catheter ablation has not been elucidated. Nevertheless, it is very
likely that atrial pathology affects energy delivery to tissue and spe-
cific forms of cardiomyopathy may differentially affect ablation pro-
cedures. However, the true impact and interaction of various energy
sources with different atrial pathologies need to be studied.

Conclusion
Atrial cardiomyopathies as defined in this consensus paper have
a significant impact on atrial function and arrhythmogenesis.
The EHRAS classification (EHRAS Class I– IV) is a first attempt to
characterize atrial pathologies into discrete cohorts. Because
disease-related histological changes in atrial tissue are often poorly
characterized, not necessarily specific and vary considerably over
time their classification is challenging. Further studies are needed
to implement and validate the EHRAS classification and to assess
its value in guiding clinical understanding and management of AF.
Nevertheless, a more precise, defined classification of atrial path-
ologies may contribute to establishing an individualized approach
to AF therapy, which might improve therapeutic outcomes.
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